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Abstract 

Descoping is the strategic abandonment and/or 
weakening of objectives. It is required whenever limited 
resources preclude satisfactory attainment of all those 
objectives. Potential causes of the need for descoping are 
numerous, and descoping is a recurring phenomenon 
during project planning and development. 

We present an approach which facilitates descoping. It 
is founded upon a quantitative model of requirements 
attainment, resource consumption, and risk. Features of 
this model allow for the representation of interactions 
between objectives. Measures derived from this qualitative 
model support the identification and evaluations of 
descope options. Tool support for the model gives 
assistance to users in making their descope decisions. 

1. Introduction 

Determining the objectives (a.k.a. requirements) is 
widely recognized as one of the crucial early steps in 
project planning. In almost all cases the objectives must be 
balanced against the costs of attaining them - it is rare that 
objectives are committed to no matter what their cost.  
Cost limitations force selection of the subset of objectives 
to be pursued. Later in the lifecycle, deviations from the 
planned development process lead to the need to revisit 
this selection. Schedule slippages, cost overruns, and 
requirements changes can each contribute to this. Under 
fortuitous circumstances, an increase in objectives could 
be feasible, but the much more common situation is to 
need to descope further. For the purposes of this paper, the 
word “descope” is intended to cover both kinds of down-
selection, both during initial planning, and during the 
course of development. 

Section 2 describes the challenges of descoping, and 
past work in this area. Section 3 introduces the 
quantitative risk-based model that serves as the basis for 
our investigations of descoping. Section 4 presents the 
ways in which this model supports in-depth descope 
planning. Section 5 offers a conclusion, and some 
suggestions for future work. 

2. Descoping Challenges 

To descope effectively requires cost estimation (how 
much it will cost to attain a given set of objectives) and 
valuation (what is the end value of attaining a given set of 
objectives).  These are both research areas in which there 
has been substantial progress. For example, COCOMO 
[Boehm et al, 2000] helps predict costs once the overall 
project characteristics (both product characteristics, and 
development process characteristics) have been estimated. 
Accord [Ullman, 2001] helps groups of people achieve 
consensus on the preferred set of objectives. 

Descoping is complicated when objectives interact (i.e., 
when they are interdependent, so that an objective cannot 
be considered in isolation of all the other objectives). Such 
interaction appears to be commonplace. [Carlshamre et al, 
2001] report a study in which they found 
interdependencies to be the norm in their setting (Ericsson 
Radio Systems). Robinson et al [Robinson et al, 1999] 
employ the term “requirements interaction management” 
in their survey of the broad range of studies in this area. 

Other terms for what we are here calling “descoping” 
include “requirements prioritization”, “requirements 
triage” [Davis, 2000], and (especially in the context of 
commercial software products) “release planning”. 
Examples of tool-supported approaches that assist in this 
area include: the cost-and-value based approach [Karlsson  
& Ryan, 1997], the “negotiated win conditions” of 
[Boehm et al, 1994], the explicit treatment of non-
functional requirements in evaluation alternatives as part 
of the i* approach [Mylopoulos et al, 2001]. 

Our setting, that of spacecraft design and operation, 
faces these same pressures. We are resource constrained – 
NASA’s budget must be allocated to best achieve science 
return; launch vehicle capacities constrain mass and 
volume; solar panels can yield only so much electrical 
power. We too are often schedule constrained – albeit not 
because of economic pressures to be first to market, but 
because of cosmological factors that favor certain launch 
windows (e.g., proximity in orbit between Earth and 
Mars). Spacecraft introduce yet another complication - 
risk. Risk is unavoidable in our setting, due to the 
potential for irreparable hardware failures, unpredictable 
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aspects of the environment, lack of detailed and/or current 
knowledge of the spacecraft state (because of limited 
communications bandwidth and long round-trip light 
times), and the sheer complexity of their multi-
disciplinary development. This forces the consideration of 
not only which objectives to select, but also how diligently 
to pursue them.  [Greenfield 1998] recognized the need to 
trade risk itself as a resource, alongside other key factors 
in spacecraft development (e.g., cost, schedule, mass, 
power).  

3. A risk-based cost-benefit model 

The basis for our investigations is a quantitative risk-
based model that we have been developing at JPL. This 
model, called “Defect Detection and Prevention (DDP)”, 
has been applied to help assess and plan developments of 
novel spacecraft technologies and systems [Cornford et al, 
2001], [Cornford et al, 2002]. We have reported on this 
model in other publications, with an emphasis on how it is 
used to assess risk and plan how to best reduce risk. Here 
we focus on descoping., where the aim somewhat 
different, namely to identify the objectives to abandon.  

The topology of DDP’s risk-based model is sketched in 
Figure 1. Objectives (O1, O2, ...) are given weights, 
reflecting their relative importance. Risks (R1, R2, ...) are 
all the things that, should they occur, have adverse 
Impacts on Objectives. These Impacts are assigned 
numerical strengths, indicating how much of the Objective 
would be lost should the Risk occur. Mitigations (M1, M2, 
...) are all the things that should they be applied,  have a 
reducing Effect on the likelihood and/or impact of Risks. 
These Effects are assigned numerical strengths, indicating 
by how much the likelihood and/or impact of the Risk will 
be reduced should the Mitigation be applied. On occasion 
a Mitigation may make certain Risks worse, either by 
“aggravating” the Risk (making its impacts on 
Requirements more severe) or by “inducing” the Risk 
(increasing its likelihood of occurrence). The DDP 
model’s Effect links accommodates these phenomena.  

Overall, the cost of a DDP model is the sum of the 
costs of the Mitigations selected for application. The 
benefit of a DDP model is the sum of attainment of its 
Objectives, calculation of which takes into account the 
Risks’ impacts on those Objectives, moderated by the 
reducing effects of the selected Mitigations on those 
Risks. 

In practice, the DDP data for a given application is 
voluminous and coupled. This can be seen in Figure 2, 
which shows data from an actual application drawn in this 
“topological” presentation style. Each of the squares in the 
top row represents an Objective; there are 32 in all. Each 
of the squares in the middle row represents a Risk; there 
are 69 of them in all. 352 Impact links connect Objectives 
and Risks. Each of the squares in the bottom row 
represents a Mitigation; there are 99 of them in all. 440 
Impact links connect Mitigations and Risks. The DDP tool 
uses a variety of alternate presentations that make it 
possible to elicit and scrutinize this kind of information 

[Feather et al, 2000].  

4. DDP support for 
descoping 

DDP allows experts to pool their 
knowledge, and gain insight into the 
ways in which Objectives can (or 
cannot) be attained by suitable 
selection of Mitigations. 

DDP was originally conceived of 
to guide the judicious selection of 
quality assurance activities 
[Cornford, 1998]. In most such 
applications, the sum total cost of all 
the possible activities (which 
become Mitigations in the DDP 
model) far exceeds the resources 
available. DDP is used to guide 
experts to selecting of a subset of 
those Mitigations that maximize Figure 2. Topology of an actual DDP modelFigure 2. Topology of an actual DDP model
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attainment of Objectives while remaining within resource 
limits. Objectives are used primarily to provide a measure 
of the benefit of a given solution. 

In our applications of DDP to a variety of problems, we 
have found that it also gives insight into the Objectives 
themselves. This can be useful when, as is often the case, 
resources are so scarce as to preclude the satisfactory 
attainment of them all, thus necessitating descoping. The 
subsections that follow detail the key ways in which the 
DDP model and its software facilitate such descope 
decision making:  

• The model’s explicit and detailed treatment of 
interactions. 

• The various quantitative measures that reveal 
different aspects of descope needs. 

• Visualization to permit users to see the 
ramifications of those measures. 

• Optimization to direct users towards descope 
options worth of particular attention. 

4.1. An explicit and extensible model of 
interactions 

Interactions arise in our DDP model through the Impact 
and Effect connections. These cross-couple the 
Objectives, Risks and Mitigations. A Risk may impact 
multiple Objectives (to different extents); an Objective 
may be impacted by multiple Risks. Similarly, a 
Mitigation may effect multiple Risks (to different extents); 
a Risk may be effected by multiple Mitigations. 

This explicit treatment of cross-coupling, using risks as 
the intermediary, is central to the DDP model and sets it 
apart from other approaches. Typical requirements 
prioritization approaches have tended to follow the route 
of eliciting pairwise couplings directly among the 
objectives themselves (e.g., the “interdependencies” of 
[Carlshamre et al, 2001]). Typical risk management 
approaches have tended to ask users to estimate the risk 
(likelihood and severity) that remains after taking into 
account all the planned risk-reducing activities. In 
contrast, DDP derives a risk’s severity from the sum total 
of its Impacts on Objectives moderated by the mitigations 
whose effects reduce its impacts, and derives a risk’s 
likelihood by starting with its a-priori likelihood, and 
taking into account the mitigations whose effects reduce 
its likelihood. 

The disadvantage of the DDP approach is that it 
requires more information, which takes longer to gather 
from the experts involved in the study. However, the 
following advantages stem from DDP’s more thorough 
approach: 

• Rederivation of risk when the situation changes. 
During descoping, risk can be rederived from the 
modified information. A risk impacting an objective 
that is removed or downgraded during descoping 
will be commensurately less severe. 

• Guidance on selection of mitigations. Because 

mitigations are explicitly represented, DDP is able 
to guide users to cost-effectively select which 
mitigations to apply. During descoping, users will 
likely need to revisit this selection. Furthermore, the 
ability to trace from objectives to risks to 
mitigations allows users to understand which of 
their objectives are proving the most costly to attain.  

The DDP model is extensible. Users can and do add 
instances of Objectives, Risks and Mitigations pertinent to 
the application they are studying.  Of course, when they 
add them, they must also input the Impact and Effect 
values that relate them. 

Thus performing a study using DDP is a non-trivial 
effort. In our applications of DDP (e.g., to assess and plan 
for the maturation of technologies to make them ready for 
use on spacecraft) it has been typical to require a team of 
10 – 20 experts to provide information in several half-day 
long sessions. The following advantages stem from DDP’s 
extensibility: 

• Ability to capture problem-specific information. 
Objectives are particularly problem-specific of 
course, but so are risks, and mitigations. For 
example, we used DDP’s extensibility  to 
complement a more closed-form software quality 
assurance planning tool [Kurtz & Feather, 2000]. 

• Ability to adjust the information as the situation 
changes. Descoping that is motivated by a change in 
the availability of resources (time, schedule, 
facilities, personnel) can be explored by adjusting 
the corresponding entries in the DDP model. 

4.2. Quantitative measures of attainment, and 
their role in descope planning 

The DDP model defines several quantitative measures, 
which the DDP tool automatically computes from the 
user-provided data. The key such measures relevant to 
descoping are outlined next. 

• Objective’s degree of attainment: defined for each 
objective as the proportion of that objective 
attained. Its definition takes into account the adverse 
impact of all extant Risks and the reducing effects 
on those of all selected Mitigations.  

• Sum total attainment of all objectives: defined for 
the entire model as the sum, over all objectives, of 
each objective’s weight times its degree of 
attainment. This is the overall “value” measure of a 
DDP model. 

Objective’s degree of risk: defined for each objective 
as the proportion of that objective impacted by all 
extant Risks, taking into account the reducing 
effects of all selected Mitigations. In the DDP 
model, it is possible (indeed common) for an 
objective’s degree of risk to be greater than 1.0! 
This indicates an objective adversely impacted by 
several Risks, so much so that they more than 
completely eliminate attainment of that objective. 



  

The objective’s degree of attainment measure gives 
an indication of how well an individual objective is being 
attained. This measure is used to understand which 
objectives are being attained, and by how much, given a 
DDP model’s configuration (set of Risks and selection of 
Mitigations). Objectives that are being completely, or 
nearly completely, attained are low-risk items that we can 
have confidence will likely be met. 

The sum total attainment measure gives an indication 
of the overall value of a DDP model as currently 
configured. This can be used to compare major alternative 
descope options.  

The objective’s degree of risk measure gives an 
indication of how much work needs to be done to attain an 
objective. For an objective that is less than totally 
eliminated by Risks, this is the complement of its degree 
of attainment measure. That is, under those circumstances, 
degree of attainment = (1 – degree of risk). However, 
when an objective is more than totally eliminated by risks, 
its degree of attainment will be zero, while its degree of 
risk will be greater than 1. This degree of risk measure is 
important to understanding how implausible an objective 
really is. One that is just slightly over 1.0 at risk is a 
candidate for improvement (by selection of additional 
Mitigations to reduce the Risks impacting that objective), 
but one that is well over 1.0 at risk is a strong contender 
for descoping. 

4.3. Visualization support for exploring descope 
options 

The DDP software supports users in their exploration 
of descope options. Users can change the selection of 
mitigations and see the ramifications on all the 
automatically calculated measures. Following a change 
recalculation of these measures is automatic and rapid. For 
example, on the DDP model shown in Figure 2, a typical 
change (e.g., turning off an objective) requires less than a 
second on a 2MHz PC for recomputation. Speed is 
therefore not a problem. More challenging is the 
presentation of this information to users. The DDP tool 
provides information visualization via cogent displays 
designed to convey the status of these measures and the 
information that underpins them.  

One of the key displays is the bar chart of Objectives, 

which shows several of the measures associated with each 
objective. Figure 3 presents an annotated fragment of such 
a bar chart. Each column represents a separate objective, 
the number below corresponding to its place in the 
objectives tree. Within a column, three measures are 
indicated: a horizontal bar denotes the objective’s user-
assigned weight, a lightly shaded bar indicates the 
objective’s original degree of risk (i.e., how much it would 
be at risk if no mitigations were to be applied) and a dark 
bar indicates the objective’s current degree of risk (i.e., 
how much it is at risk taking the risk-reducing effects of 
the currently selected Mitigations into account). In the tool 
itself, color is used to make these distinctions more vivid. 
For the purposes of this paper, they have been rendered in 
grayscales. Thus for Objective number 3.1, it was 
originally more than totally at risk, but that risk has been 
reduced somewhat by the currently selected Mitigations. 
Note that the vertical axis is logarithmic, hence the 
reduction in risk is fairly significant. We use a logarithmic 
scale because in our setting reducing risks to relatively 
small levels is our usual goal, for which a logarithmic 
scale is better suited than a linear scale. 

Figure 4 shows the entire bar chart display of 
Objectives taken from actual DDP data, at a stage of 
partial risk mitigation. From this display it is evident that 
significant risk remains, and in some cases there are 
Objectives which are still more than totally at risk, e.g., 
numbers 4.1 and 4.2. 
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4.4. Optimizing the attainment of objectives 

 DDP’s calculation of costs and benefits permit 
treatment of the cost/benefit tradeoff as an optimization 
problem. The goal could be to select mitigations that 
maximize the sum total of objectives’ attainment while 
staying within a cost ceiling. Alternately, the goal could be 
to select mitigations that minimize cost while achieving 
attainment of objectives at or above a benefit floor. 
However, the voluminous and intertwined nature of 
typical DDP models makes this challenging. For example, 
in a DDP model with 50 Mitigations, there are 250 possible 
ways of selecting which of those Mitigations to perform.  

We use heuristic search techniques to automatically 
explore the large search space of Mitigation selections. 
We have had success using both genetic algorithms, and 
simulated annealing. We have also collaborated with Tim 
Menzies to apply his machine-learning based technique, 
which has proven capable of both finding near-optimal 
solutions, and identifying the Mitigations whose selection 
(or non-selection) are most critical to get those solutions 
[Feather & Menzies, 2002]. More details on our use of 
heuristic search can be found in [Cornford et al, 2003]. 

Shown in Figure 5 is an illustration of an amalgam of 
simulated annealing searches applied to optimizing an 
actual DDP spacecraft technology model across its range 
of cost levels. The horizontal axis of the plot corresponds 
to cost, with greater costs to the right. The vertical axis 
corresponds to benefit (sum total attainment of 

objectives), with greater benefits to the top. Thus the 
optimum is to be found towards the upper left corner, 
where costs are low and benefits high. Each tiny point 
corresponds to a selection of Mitigations, which the DDP 
tool has evaluated to determine cost and benefit, and 
plotted at the corresponding position on the chart. A series 
of simulated annealing searches, at successive cost levels, 
have been combined to reveal the overall cost-benefit 
profile of the model’s data. The searches tend to focus 
their attention at or near the optimal boundary. Of course, 
their searches explore numerous points in the interior. 
Hence the scattering of points across the chart, with a 
concentration towards the optimal boundary. 

Optimization runs such as this reveal to users the 
cost/benefit space. The points along the upper boundary 
give an indication of the feasible near-optimal 
profileGuided by this information, users are assisted to: 

• Predict the level of benefit that can be had for a 
given cost (or equivalently, predict the cost it takes to 
attain a given level of benefit). 

• Justify the need for additional funding when the 
profile indicates that there is still a significant gain in 
objectives to be had for modest increases in spending. 

• Avoid overspending. For example, it is evident 
from the figure that close to maximum possible 
attainment of objectives can be had for approximately 
one-quarter of the maximum cost. Above that level of 
spending, the additional benefit gain is very gradual. 
Conversely, below that level of spending, benefits 
start to drop of markedly. 

Figure 5. Automated search for the cost-benefit profile



  

Users can view specific points in this solution space in 
through the DDP tools’ usual displays. For descope 
purposes, they focus on objectives attainment of a given 
solution. To do so, they use the objectives attainment, they 
use the bar chart display shown earlier to see which 
objectives are being attained and to what extent, and 
which objectives are being left unattained (i.e., still 
significantly at risk). 

4.5. Combination of features 

These features of the DDP model and its software work 
well in combination. The detailed and extensible 
quantitative risk model is the basis. The DDP software 
supports populating this model with information elicited 
from experts in group sessions in real time. DDP 
automatically computes several measurements from the 
accumulated information, including several that have 
particular relevance to guiding descope decisions. Cogent 
visualizations present the information in ways palatable to 
human scrutiny. Automated heuristic search techniques 
are provided to help explore the large space of options, the 
results of which can be used to guide strategic decisions of 
how much overall to spend, and specific solutions points 
can be scrutinized in detail. 

5. Conclusions and future work 

We have outlined the descope problem. In our context 
of spacecraft development, we face many of the same 
pressures on project development as are common 
elsewhere (severely limited schedules, budgets and other 
resources). In addition, we must explicitly deal with risk. 
All these factors combine to make descope a recurring 
need. 

The quantitative risk-centric model we have used for 
risk management is well suited to in-depth consideration 
of descope options and their implications. It has a detailed 
model of interactions among objectives, risks and 
mitigations. Quantitative measures defined in terms of that 
model give insight into opportunities for, and 
consequences of, descopes. Cogent visualizations inform 
project managers of this information, facilitating their 
strategic decision-making. Automated optimization (using 
heuristic search techniques) finds descope opportunities 
along the near-optimal boundary of the cost-benefit trade 
space. 

Taken together, these capabilities provide significant 
support for strategically planning descopes. We see the 
need for further work in the areas of: 

• Enhanced interplay between the optimization / 
search techniques, and human-guided decision-
making. For example, allow users to impose 
additional constraints on the solution sets they are 
willing to accept, and re-optimize taking those into 
account. Out collaborative work with Tim Menzies 
[Feather & Menzies, 2002] has an aspect of this. The 
work of [Menzies & Hu, 2001] suggests opportunities 

for more such benefits. 
Exploration of descope options that, rather than discard 

objectives, change their relative weights. For 
example, suppose a mission with primary and 
secondary science return objectives needs to be 
descoped; rather than discarding one of those 
objectives, perhaps the descope needs can be met be 
reversing their prioritization? The New Millenium 
missions [Minning at al, 2000], each designed to 
flight validate advanced technologies, would be 
promising application areas for this. 

The status of our work is that the DDP model has been 
used on numerous studies of spacecraft technologies. 
Although we did not approach those studies with 
descoping of objectives in mind, it is interesting to note 
that some of them led to descope decisions. In retrospect, 
we see descoping as a recurring phenomenon, and are 
encouraged by DDP’s ability to assist in this. Future work 
will, we hope, further extend its capabilities in this 
direction. 

We are currently performing some experiments to 
automatically explore how descope options might lead to 
alternate selections of mitigations. Given a DDP model for 
which the optimal cost-benefit profile has already been 
computed (as in Figure 5), we systematically turn off one 
of the objectives, and re-perform the optimal search at a 
given cost level or levels. The aim is to find a solution 
(selection of Mitigations) that attains the remaining 
objectives more effectively. The existence of such a 
solution indicates that the turned-off objective is a 
candidate for descoping. Conversely, the lack of such a 
solution indicates that the turned-off objective was being 
attained anyway, so there is little or no point to its 
descoping. Initial results in running this on actual DDP 
application data shows that there are surprisingly few 
instances where turning off a single objective makes a 
radical difference. We are extending these experiments to 
turn off multiple objectives. Unfortunately, the naive way 
we are approaching this problem is computationally 
expensive – each time we turn off an objective, we have to 
re-run the heuristic search to see whether new solutions 
emerge. Compounding this, if we wish to explore turning 
off pairs, triples, etc., of objectives, the number of possible 
combinations grows combinatorially. This is clearly an 
area where a more sophisticated approach is sorely 
needed. 
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